If it's not what You are looking for type in the equation solver your own equation and let us solve it.
17x^2+30x=0
a = 17; b = 30; c = 0;
Δ = b2-4ac
Δ = 302-4·17·0
Δ = 900
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{900}=30$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(30)-30}{2*17}=\frac{-60}{34} =-1+13/17 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(30)+30}{2*17}=\frac{0}{34} =0 $
| 4r2+48=4r+24+4r2-8r | | 47x^2-39x=0 | | 83=5+6(1+4x) | | 7/28=6/x | | y-7-6y=-48 | | 2(m-9)+(m-9)+m=97 | | x/3-7=21 | | 18x3x-11=9x+9-6x | | 33/q=18 | | 3r+-45=12 | | 24x-x^2=-4.9 | | 0.99=1-g | | 4x2-52x+120=0 | | 28/32=7/x | | 2x+3x=153 | | 4x²+10x=42 | | 130=7(1-5x)-6x | | 12m=725-125 | | 3-r=4+r | | m/12=725-125 | | -2=10-r | | m=725-125/12 | | 3u+6=4-2 | | -m-6=-2 | | -6x+9x-8=-2 | | 8x-7x+1=8 | | -4x-7=-7x-2 | | 40-32=n | | -10x+2x+3=-3 | | 1x+8=8x+8 | | 0.18=x/30+x | | L=2x+36 |